So Intricately Done

Naturalis_Biodiversity_Center_-_RMNH.ART.803_-_Hydrangea_-_Kawahara_KeigaKawahara Keiga 川原慶賀   (1786 – 1860?)


Bloom — is Result — to meet a Flower
And casually glance
Would scarcely cause one to suspect
The minor Circumstance

Assisting in the Bright Affair
So intricately done
Then offered as a Butterfly
To the Meridian —

To pack the Bud — oppose the Worm —
Obtain its right of Dew —
Adjust the Heat — elude the Wind —
Escape the prowling Bee

Great Nature not to disappoint
Awaiting Her that Day —
To be a Flower, is profound
Responsibility —


Emily Elizabeth Dickinson (1830 – 1886) 

Chat Roux Assis

cat fLéonard Tsuguharu Foujita — 藤田 嗣治 — (1886 – 1968)


kinyuHistoire naturelle des dorades de la Chine, Edme Billardon-Sauvigny (1736 – 1812), gravées par F.N. Martinet accompagnée d’observations et d’anecdotes relatives aux usages, aux moeurs et au gouvernement de cet empire par m. de Sauvigny


“Because fishes inhabit vast, obscure habitats, science has only begun to explore below the surface of their private lives. They are not instinct-driven or machinelike. Their minds respond flexibly to different situations. They are not just things; they are sentient beings.”

In his new book, What A Fish Knows: The Inner Lives Of Our Underwater Cousins, Jonathan Balcombe presents evidence that fish have a conscious awareness that allows them to experience pain, recognize individual humans and have memory.
“Thanks to the breakthroughs in ethology, sociobiology, neurobiology and ecology, we can now better understand what the world looks like to fish,” Balcombe says.

“They are the product of over 400 million years of evolution so the perceptions and sensory abilities of fish” . . . whether strange to us or very familiar, are wonderfully developed.
“One is a sense of water pressure or movement in the water that’s very acute. Some fishes, including sharks, can detect electrical signals from other organisms.
Some can create electric organ discharges, and they use those as communication signals. They will change their own frequency if they’re swimming by another fish with a similar frequency, so they don’t jam and confuse each other. They also show deference by shutting off their EODs when they’re passing the fish who holds that territory.

At low tide, frillfin gobies hide in rocky tide pools. If danger lurks — a hungry octopus, say — the goby will jump to a neighboring tide pool, with remarkable accuracy. How do they avoid ending up stranded on the rocks?
A series of captive experiments dating from the 1940s found something remarkable. They memorize the tide pool layout while swimming over it at high tide. They can do it in one try, and remember it 40 days later. So much for a fish’s mythic three-second memory.

On reefs, collaborative hunting has developed an astonishing degree of sophistication. A grouper has been observed inviting a moray eel to join in a foray, communicating by a head-shaking gesture or a full body shimmy. The two fishes probably know each other, for individual recognition is the norm in fish societies.
If the grouper chases a fish into a reef crevice, it uses its body to point to the hidden prey until the slender eel goes after it; if the hapless quarry escapes to open water, the grouper is waiting.

In a study of striated surgeon-fishes collected from the Great Barrier Reef, researchers stressed their subjects by placing them, one at a time, for 30 minutes in a bucket with just enough water to cover them.
When given the chance, the frazzled surgeon-fishes repeatedly sidled up to a realistic mechanical model of a cleaner-fish that was rigged to deliver gentle strokes. Their stress levels — measured as cortisol taken by blood sample — plummeted.
One study showed individual recognition of human faces by fishes–so they probably do recognize individual divers–and they come up to be stroked.

If temporary confinement to a small bucket traumatizes a fish, think what it feels like to be caught. Every year, an estimated half trillion fishes are hauled up from their habitat.
They die by suffocation and crushing in order to provide food for us, our pets and livestock, and even for the fishes we farm. That, or we toss them back, usually dead or dying, as unwanted by-catch.

Some of the methods to catch fish for acquariums are pretty awful: Cyanide poisoning, which often kills many of the fishes being targeted– or ones not being targeted– and explosive devices are sometimes used.
And then you have the vicissitudes of transport, where they’re shipped over continents and the mortality rates are high.
So we are campaigning actively to try to discourage people from buying these fishes, because when you purchase a product, you tell the manufacturer to do it again, and we don’t really want that happening

The simplest way to help is to reduce our consumption of fish and to source what we do eat from suppliers that adhere to animal welfare standards.
As innovative research reveals new facets of the private lives of fishes, I’m hopeful that perceptions will change and we’ll show them more mercy.”


N.Y. Times 5/15/2016

Fresh Air 6/20/2016

Boys In A Pasture

winslow homWinslow Homer (1836 – 1910)

Surrendering Forests

tree david johnsonDavid Johnson (1827 – 1908)

by Jeff Tietz
Rolling Stone

From a tree’s perspective, excessive heat may be as deadly as lack of water.
To photosynthesize, a tree opens pores in its leaves called stomata and inhales CO2. Solar-charged chemical reactions then transform the CO2 into carbohydrates — the raw stuff of leaves and wood. During this process, a fraction of the tree’s internal water supply evaporates through its stomata, creating the negative pressure that pulls water from the soil into the tree’s roots, through its trunk and up to its canopy. But heat juices the rate at which trees lose moisture, and that rate escalates exponentially with temperature — so small temperature increases can cause a photosynthesizing tree to lose dangerous amounts of water.
“Forests notice even a one-degree increase in temperature,” says Park Williams at Los Alamos National Laboratory.

In the death scenario, the sky sucks water from the leaves faster than it can be replaced by water in the soil, and the resulting partial vacuum fatally fractures the tree’s water column. If a tree closes its stomata to avoid this, shutting down photosynthesis, it risks starvation.
Ultimately, the tree’s cellular chemistry will fail, but it will often die before that, as its defenses fall; the complexly toxic sap that repels predatory insects dries up.
Many insects can detect diminished sap levels within tree bark by scent — they smell drought stress and pheromonally broadcast news of deteriorating tree health. Other defenses – against microbes, for example — may also be compromised.
A hotter climate generally means more insects.
It also means more, and more intense, wildfires.

For decades, all over the planet, heat-aggravated drought has been killing trees: mountain acacia in Zimbabwe, Mediterranean pine in Greece, Atlas cedar in Morocco, eucalyptus and corymbia in Australia, fir in Turkey and South Korea.
In 2010 a group of ecologists published the first global overview of forest health. They described droughts whose severity was unequaled in the “last few centuries” and documented “climate-driven episodes of regional-scale forest die-off.”

Because global warming outpaces evolutionary adaptation, the question is: Can trees survive as they are?
The conifer forests of the Southwest United States, if climate projections are even minimally accurate, cannot, but what about the rest of the world’s forests?
That’s a critical question, because forests cover more than a quarter of the planet’s land, and they help stabilize the climate by pulling immense quantities of CO2 out of the air.
In August 2011, a team of scientists led by Dr. Yude Pan, a U.S. Forest Service researcher, reported that between 1990 and 2007, forests sequestered about 25 percent of all greenhouse-gas emissions — everything not in the air or seas.

Climatologists worry that if forests across the planet deteriorate, they could, on balance, begin releasing as much carbon as they absorb.
One of Pan’s collaborators, Dr. Richard Birdsey: “If the carbon sink in forests fails, a simple speculation is that global temperatures would increase proportionally to the increase of CO2 concentration, so about 25 percent above current climate projections.”
“The more forests die, the less carbon they take out of the air, the warmer it gets, the more forests die,”
says Dr. Nate McDowell at Los Alamos. “It’s a thermostat gone bad.”

The better we understand climate change, the more we seem to find that warming begets warming in unexpected and self-amplifying ways: Implacable heat engines materialize and run independently of all human effort.

There are an estimated 1 trillion metric tons of frozen carbon in the soils of the Arctic region — a century’s worth of global emissions, twice the amount stored in the global forest, another few Industrial Revolutions.
As the planet warms, permafrost thaws and decomposes, sending carbon into the air and further warming the planet. Higher temperatures also kindle increasingly intense and frequent wildfires in high-latitude forests, to quadruple effect.
And fire releases carbon directly; it burns off the insulating upper layer of vegetation, exposing more permafrost to warm air; it blackens the trees and land, which consequently absorb more solar radiation; and its soot can settle on and darken snow and ice sheets to the north, which then also absorb more solar radiation.

By the end of the century, the woodlands of the Southwest will likely be reduced to weeds and shrubs. And scientists worry that the rest of the planet may see similar effects.


Trees Cry Out

The Longevity of Trees
A Living Miracle
Du Bon Usage des Arbres

Sic Transit

goat tosini this
Michele Tosini (1503–1577)





Am I the only one

my neighbour’s
                      frolicksome goat,
            tied to a pecan tree?
All morning
                  it has been examining
an empty bushel basket
                                  and has lifted
one leg delicately
                            like a circus horse
as if to roll it,
                           but whether to do that
or to butt it
                     with its small horns,
that is the question.
                                 Not of great moment,
no signing of the Charter,
                                        but like air music,
quickest of the elements.
                                       Towards which I leaped!

In form
            its own grace,
                as it passed
in retrospect, classical.
The real goat stayed,
the body solid
                      as a four-square loom
and delivered me
                         from abstraction.
His coloring,
                     greyish-soft shades,
their dark and light
                        passing into each other
as in an antique rubbing.

I now found myself
                            sitting so near,
my shade,
               as in the Inferno,
sensed his,
                  but he gave no sign
of my presence,
                        even when I stroked him
and my heart leaped
                              at the gentle fleece,
too fine for a hard life.
He continued nibbling
                                 on a dry bush.

I would not have believed
could bolster the man in me
                                          and be so enduring.
Sic transit, not caring
                                    whether it is recognized,
The Divine
                (from another age).
He was poking
                     into the underbush now
and reached across my head
                                        for the small spiny twigs.

At that the phase
and a sensuous trembling
                                     hung in the air,
as when a bee is about
                                  to descend
on blossoming clover,
                                 and I
felt myself being pulled
                                     as by a line
from the invisible
                            other side
to enter goathood,

                            deeper than sight.


Carl Rakosi (November 6, 1903 – June 25, 2004)


A Boy Was Born

pallFederico Fiori (c. 1526 – 1612)

In Memoriam



Benjamin Britten setting (1933) of a Middle English carol from an anonymous manuscript written around 1504.

A Beautiful Law of Nature

camouflage caterpillarAbbott Handerson Thayer (August 12, 1849 – May 29, 1921)


“Less Thing-Like”

Abbott Thayer was a lifelong wildlife advocate whose artistic focus never strayed far from his personal fascination with the natural world.

On 11 November 1896 he made an appearance at the Annual Meeting of the American Ornithologists’ Union in Cambridge, Massachusetts arriving at the Harvard Museum of Comparative Zoology on Oxford Street bearing a sack of sweet potatoes, oil paints, paintbrushes, a roll of wire, and two new principles of invisibility in nature that together formed his “Law Which Underlies Protective Coloration.”
In his afternoon open-air lecture, Thayer argued that every non-human animal is cloaked in an outfit that has evolved to obliterate visual signs of that animal’s presence in its typical habitat at the “crucial moment” of its utmost vulnerability.

Thayer arrived at camouflage inadvertently, in the process of pursuing art.
As a student, he had learned that any shape drawn on a flat surface can be given volume and dimension by a venerable process called shading. This is reliably achieved by rendering the shape lighter on the top and gradually darker toward the bottom.
As we know from current brain research, this takes advantage of an inborn visual tendency called the top-down lighting bias: when we look at anything, we default to the assumption that its light source is coming from overhead.

Observation then enabled him to realize why so many animals have light colored bellies with darker coloring toward the tops of their bodies. The effect is the inverse of shading.
Appropriately, it became known as countershading, because the effect counteracts the shadows resulting from cast sunlight, making an animal look less dimensional, less solid, less “thing-like.”
Though some of Thayer’s other proposals have been disregarded, countershading is a widely accepted biological principle today, and stands as the artist’s most significant contribution to the natural sciences.

By 1896, Thayer was increasingly inserting himself into what was a longstanding debate over the origins, effectiveness, and pervasiveness of protective concealment in the natural world.
After the publication of Charles Darwin’s Origin of Species in 1859, animal coloration—both its origins and its role in animal behavior—had become a key locus of debate among natural historians, artists, and the lay public.
Prior to this period, naturalists had noted instances of animals’ blending in with their backgrounds. It seemed remarkable that God had “dropped” them into place just so—“nature by design.”

By contrast, in an evolutionary model, there was a gradual “fitting together” over time. Evolutionary theories, both Darwin’s and that of his colleague Alfred Russel Wallace, presented a range of explanations for animal colors. Darwin emphasized interrelations between the sexes as the cause of the showy coloration found in the male of many species; females chose the more colorful males for mating.
Wallace, studying the colors of many insects, interpreted bright hues and complex patterns alike as either warning signals to potential predators, modes for assimilation in the environment, or mimicry of other, more dangerous, species.

Meanwhile,  philosopher-psychologist William James, a friend of Thayer’s and a fellow birder, discussed the experience of bird watching in his 1890 Principles of Psychology, describing the study of illusions, or so-called “false perceptions,” as critical in efforts to understand human apprehension of depth, color, and movement.

Thayer’s New Hampshire summer home, to which he and his family relocated around 1900, was transformed into a year-round laboratory for studying protective coloration.
His communion with nature permeated the entire household. Wild animals—owls, rabbits, woodchucks, weasels—roamed the house at will. There were pet prairie dogs named Napoleon and Josephine, a red, blue and yellow macaw, and spider monkeys

Soon, his wife Emma, son Gerald, and daughters Mary and Gladys joined him as fellow investigators, technicians, and artisans.
Between 1901 and 1909, their generative theories were built up into a universe of paintings, photography (a new technology), collages, stencils, and essays. Each format addressed the enigmas of coloration and invisibility in different ways.

Thayer was simultaneously producing, witnessing, and documenting the processes of a living being’s assimilation into its habitat.


Richard Meryman
Roy R. Behrens
Hanna Rose Shell


The Canary

canary finch menzelAdolph Friedrich Erdmann von Menzel (1815 – 1905)


Did Your Shopping List Kill a Songbird?
New York Times March 30, 2008

A consumer may not be able to tell the difference but a red & blue Thomas the Tank Engine made in Wisconsin is not the same as one manufactured in China: the paint on the Chinese twin may contain dangerous levels of lead. Also a plump red tomato from Florida is often not the same as one grown in Mexico. The imported fruits and vegetables found in our shopping carts in winter & early spring are grown with types & amounts of pesticides that would often be illegal in the United States.

In this case, the victims are North American songbirds. Bobolinks were once a common sight in the Eastern United States. In mating season, the male in his handsome tuxedo-like suit sings deliriously as he whirrs madly over the hayfields. Bobolink numbers have plummeted almost 50 percent in the last four decades, according to the North American Breeding Bird Survey.

The birds are being poisoned on their wintering grounds by highly toxic pesticides. Rosalind Renfrew, a biologist at the Vermont Center for Ecostudies, captured bobolinks feeding in rice fields in Bolivia and took samples of their blood to test for pesticide exposure. She found that about half of the birds had drastically reduced levels of cholinesterase, an enzyme that affects brain and nerve cells — a sign of exposure to toxic chemicals.

Since the 1980s, pesticide use has increased fivefold in Latin America as countries have expanded their production of nontraditional crops to fuel the demand for fresh produce during winter in North America and Europe.
Rice farmers in the region use monocrotophos, methamidophos and carbofuran, all agricultural chemicals that are rated Class I toxins by the World Health Organization, are highly toxic to birds, and are either restricted or banned in the United States. In countries like Guatemala, Honduras and Ecuador, researchers have found that farmers spray their crops heavily and repeatedly with a chemical cocktail of dangerous pesticides.

In the mid-1990s, American biologists used satellite tracking to follow Swainson’s hawks to their wintering grounds in Argentina, where thousands of them were found dead from monocrotophos poisoning. Migratory songbirds like bobolinks, barn swallows and Eastern kingbirds are suffering mysterious population declines, and pesticides may well be to blame.
A single application of a highly toxic pesticide to a field can kill seven to 25 songbirds per acre. About half the birds that researchers capture after such spraying are found to suffer from severely depressed neurological function.

Migratory birds, modern-day canaries in the coal mine, reveal an environmental problem hidden to consumers. Testing by the United States Food and Drug Administration shows that fruits and vegetables imported from Latin America are three times as likely to violate Environmental Protection Agency standards for pesticide residues as the same foods grown in the United States. Some but not all pesticide residues can be removed by washing or peeling produce, but tests by the Centers for Disease Control show that most Americans carry traces of pesticides in their blood. American consumers can discourage this poisoning by avoiding foods that are bad for the environment, bad for farmers in Latin America and, in the worst cases, bad for their own families.

Most mass-produced coffee is grown in open fields heavily treated with fertilizers, herbicides, fungicides and insecticides. In contrast, traditional small coffee farmers grow their beans under a canopy of tropical trees, which provide shade and essential nitrogen, and fertilize their soil naturally with leaf litter. Their organic, fair-trade coffee is now available in many coffee shops and supermarkets, and it is recommended by the Audubon Society, the American Bird Conservancy and the Smithsonian Migratory Bird Center.
Bananas are typically grown with one of the highest pesticide loads of any tropical crop. Although bananas present little risk of pesticide ingestion to the consumer, the environment where they are grown is heavily contaminated.
When it comes to nontraditional Latin American crops like melons, green beans, tomatoes, bell peppers and strawberries, it can be difficult to find any that are organically grown. We should buy these foods only if they are not imported from Latin America.

Now that spring is here, we take it for granted that birdsong will fill the air when our apple trees blossom. But each year, as we continue to demand out-of-season fruits and vegetables, we ensure that fewer and fewer songbirds will return.

Bridget Stutchbury, a professor of biology at York University in Toronto, is the author of “Silence of the Songbirds”


the rose
Georgius Jacobus Johannes van Os (1782-1861)



Published in: on May 7, 2016 at 8:18 pm  Leave a Comment  
Tags: , , , , ,