Ripples

rusk inJohn Ruskin (1819 – 1900)
Rocks in Unrest

 

Phoebe Sarah Marks in Hampshire, England,  was born on 28 April 1854. She was the third child of a Polish-Jewish watchmaker named Levi Marks, an immigrant from Tsarist Poland; and Alice Theresa Moss, a seamstress. Her father died in 1861, leaving Sarah’s mother with seven children and an eighth expected. Sarah took up some of the responsibility for caring for the younger children.
At the age of nine, Sarah was invited by her aunts, who ran a school in London, to live with her cousins and be educated with them.
In her teens she adopted the name “Hertha” after the heroine of a poem by Algernon Charles Swinburne that criticized organised religion.

By age 16, she was working as a governess, but  George Eliot supported Ayrton’s application to Girton College, Cambridge.
Eliot was writing her novel Daniel Deronda at the time. One of the novel’s characters, Mirah, was said to be based on Ayrton.
During her time at Cambridge, Ayrton constructed a sphygmomanometer, led the choral society, founded the Girton fire brigade, and, together with Charlotte Scott, formed a mathematical club. In 1880, Ayrton passed the Mathematical Tripos, but Cambridge did not grant her an academic degree because, at the time, Cambridge gave only certificates and not full degrees to women.

Upon her return to London, Ayrton earned money by teaching and embroidery, ran a club for working girls, and cared for her invalid sister.
She was also active in devising and solving mathematical problems, many of which were published in “Mathematical Questions and Their Solutions” from the Educational Times.
In 1884 Ayrton patented a line-divider, an engineering drawing instrument for dividing a line into any number of equal parts and for enlarging and reducing figures. Its primary use was likely for artists for enlarging and diminishing, but it was also useful to architects and engineers. From then until her death, Hertha registered 26 patents.

That year Ayrton began attending evening classes on electricity at Finsbury Technical College, delivered by Professor William Edward Ayrton, a pioneer in electrical engineering and physics, and a fellow of the Royal Society.
In 1899, she was the first woman ever to read her own paper before the Institution of Electrical Engineers. Her paper was entitled “The Hissing of the Electric Arc”. Shortly thereafter, Ayrton was elected the first female member; the next woman to be admitted to the IEE was in 1958.
She petitioned to present a paper before the Royal Society but was not allowed because of her sex, and “The Mechanism of the Electric Arc” was read by John Perry in her stead in 1901.
Ayrton was also the first woman to win a prize from the Society, the Hughes Medal, awarded to her in 1906 in honour of her research on the motion of ripples in sand and water and her work on the electric arc.

By the late nineteenth century, Ayrton’s work in the field of electrical engineering was recognised more widely. At the International Congress of Women held in London in 1899, she presided over the physical science section, and she spoke at the International Electrical Congress in Paris in 1900. Her success there led the British Association for the Advancement of Science to allow women to serve on general and sectional committees.

Ayrton’s interest in vortices in water and air inspired the Ayrton fan, used in the trenches in the First World War to dispel poison gas.
She helped found the International Federation of University Women in 1919 and the National Union of Scientific Workers in 1920.

Two years after her death in 1923, Ayrton’s lifelong friend Ottilie Hancock endowed the Hertha Ayrton Research Fellowship at Girton College, which continues today.

W

Advertisements

The URI to TrackBack this entry is: https://secretgardening.wordpress.com/2016/04/28/ripples/trackback/

RSS feed for comments on this post.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s